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The analytical theory of explosion triggering by an accelerating flame is developed. The theory describes the
structure of a one-dimensional isentropic compression wave pushed by the flame front. The condition of
explosion in the gas mixture ahead of the flame front is derived; the instant of the explosion is determined
provided that a mechanism of chemical kinetics is known. As an example, it is demonstrated how the problem
is solved in the case of a single reaction of Arrhenius type, controlling combustion both inside the flame front
and ahead of the flame. The model of an Arrhenius reaction with a cutoff temperature is also considered. The
limitations of the theory due to the shock formation in the compression wave are found. Comparison of the
theoretical results to the previous numerical simulations shows good agreement.
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I. INTRODUCTION

A front of exothermal chemical reactions �combustion�
may propagate in two different hydrodynamic regimes: one
of them is the subsonic regime of flame, the other one is the
supersonic regime of detonation �1–3�. In a flame the cold
fuel mixture ahead of the front is heated by thermal conduc-
tion, which initiates the reaction in the cold gas. In the case
of detonation the reaction is triggered by a leading shock
wave, which compresses and heats the cold fuel mixture. The
flame and the detonation have quite different properties for
the same fuel mixture; particularly, the propagation velocity
of the reaction front may differ by several orders of magni-
tude in these two regimes. Still, it was observed in many
experiments that a flame front in a tube may spontaneously
accelerate and trigger detonation: the phenomenon is known
as the deflagration-to-detonation transition �DDT� �2–8�. The
first explanation of the DDT goes back to the classical work
by Shelkin �5�. According to this explanation, a flame front
interacts with the tube walls due to the nonslip boundary
conditions at the walls and the thermal expansion of the
burning matter. This interaction makes the flame front
curved, and the flame accelerates. The accelerating flame
acts like a piston pushing compression waves into the fuel
mixture. The compression waves heat the cold gas and re-
duce the reaction time in the mixture ahead of the flame
front. Finally, the fuel mixture explodes ahead of the flame,
and the explosion develops into detonation. Though this
qualitative description of the DDT was generally accepted
since the 1940s, still, there was much trouble in developing
the qualitative description into a quantitative theory. On the
contrary, the DDT was considered as one of the most diffi-
cult problems of combustion science. The main reason for
that was a common belief that the flame acceleration and the
DDT are possible only for strongly turbulent flames in agree-
ment with the experimental observations �2–8�. However, the
theory of turbulent burning by itself is a superproblem of
combustion science waiting for solution in spite of almost a
century of intensive research, see, for example, Refs.
�2,9–22�.

Only recently, an idea was suggested that the flame accel-
eration and the DDT may happen even for laminar flames in

a tube with adiabatic walls and with one end closed �23,24�.
Though it is difficult to obtain adiabatic walls in a real ex-
periment, such a situation is quite common in numerical
simulations. Unlike real experiments, in numerical simula-
tions it is much easier to control the boundary and the initial
conditions. In that way, it becomes possible to separate the
mechanism of principal importance for the flame accelera-
tion from other supplementary effects, which is quite diffi-
cult to achieve in reality. Particularly, the possibility of the
DDT in the scope of a laminar flow was illustrated by a
direct simulation run in Ref. �23� starting from an accelerat-
ing flame and up to the well-developed detonation. The idea
of a laminar DDT turned out to be incredibly productive for
the theory, since it allows avoiding the difficulties related to
turbulence. Based on this idea, the analytical theory of lami-
nar accelerating flames in tubes with adiabatic walls was
developed in a recent paper �25�; the theory was validated by
extensive direct numerical simulations. It was obtained that
asymptotically in time a flame front accelerates exponen-
tially as

Uw = Ufexp��
Uft

R
� , �1�

where Uf is the planar flame velocity, Uw is the velocity of
the flame propagation proportional to the total surface area of
the flame front, R is the tube half width �radius�, and the
dimensionless acceleration rate � depends on the flow pa-
rameters. In Ref. �25� the acceleration rate was found ana-
lytically for the case of a two-dimensional �2D� channel flow
as

� =
�Re − 1�2

4 Re
��1 +

4 Re �

�Re − 1�2 − 1�2

, �2�

where Re=UfR /� is the Reynolds number �� is the kinemati-
cal viscosity of the fuel mixture� and �=� f /�b is the expan-
sion coefficient, which shows density variations of the burn-
ing matter from the fuel mixture � f to the burnt gas �b. The
analytical formula for � is in good agreement with numerical
simulations �25�. In the more realistic geometry of a cylin-
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drical tube a similar problem was solved in Ref. �26�. It was
obtained that the acceleration rate � in cylindrical tubes is
from 2 to 4 times larger �depending on Re� in comparison
with the 2D case. So far the theory did not take into account
heat losses to the walls and local flame quenching, which are
inevitable in real experiments. Besides, the theory has to
include turbulent burning like that observed in the DDT ex-
periments �2–8�. All these effects influence, of course, the
acceleration rate � in Eq. �1�, and they have to be taken into
account in the theory of the flame acceleration. However, at
present one may adopt acceleration of laminar flames in
tubes with adiabatic walls as a physical model of the process,
together with Eq. �2�, which has been validated in direct
numerical simulations �25�. It was demonstrated in Ref. �23�
that such a model does capture the essence of the DDT
mechanism.

In the present paper we study the next step in the DDT,
namely, the compression wave pushed by an accelerating
flame, and the explosion in the fuel mixture ahead of the
flame front. We develop the analytical theory of the process
within the approximation of a one-dimensional isentropic
flow. The isentropic approximation is rigorous until a shock
is formed in the compression wave. After that instant, the
isentropic approximation may be considered only as a model,
which is justified by the relatively small entropy jump in
shocks of moderate intensity �1�. We find the condition of the
explosion in the compression wave ahead of the flame front,
and the time of the shock formation. If the explosion happens
before the shock is formed, then the isentropic approach re-
mains rigorous, which imposes limitations on the activation
energy of the reaction. Beyond that limits the present theory
may be treated as a model. We compare the developed theory
to the results of direct numerical simulations on the DDT in
a laminar flow �23�. We find good agreement between the
analytical and numerical results and discuss the reasons of
possible minor deviations.

II. INSTANT OF THE GAS EXPLOSION

We consider a flame front with the normal velocity Uf
propagating in a tube of radius R from a closed end of the
tube. In that case the accelerating flame is similar to a semi-
transparent piston, which moves in the laboratory reference
frame with the velocity

Ul = �Uw = �Ufexp��
Uft

R
� , �3�

so that the position of such a piston is given by

Xl = R
�

�
�exp��

Uft

R
� − 1	 . �4�

At the same time, the velocity of the flow pushed by the
flame is different from Eq. �3�, it is equal to

Up = �� − 1�Ufexp��
Uft

R
� �5�

just ahead of the flame front at x=Xl. As long as the flow is
isentropic, the velocity u ahead of the flame is described
indirectly by the equation �1�

x = t�c0 +
� + 1

2
u� + F�u� , �6�

where c0 is the initial sound speed, � is the adiabatic expo-
nent, and the function F�u� has to be determined from the
boundary conditions at the “piston.” In the following we will
work with the dimensionless variables z=x /R, �=Uft /R, w
=u /Uf, Zl=Xl /R, f =F /R, Wp=Up /Uf. Then Eqs. �3�–�6�
may be rewritten as

Wl = � exp���� , �7�

Zl =
�

�
�exp���� − 1� , �8�

Wp = �� − 1�exp���� , �9�

z = ��Ma−1 +
� + 1

2
w� + f�w� , �10�

where Ma=Uf /c0 plays the role of the Mach number. We
calculate the function f�w� taking into account the boundary
condition w=Wp at the flame front z=Zl,

f�Wp� = Zl − ��Ma−1 +
� + 1

2
Wp� . �11�

Substituting Eq. �9� into Eq. �8� we find

Zl =
�

� − 1

Wp

�
−

�

�
=

�

� − 1

w

�
−

�

�
. �12�

Taking into account time dependence of the velocity at the
piston w=Wp, Eq. �9�, or

� = �−1ln� w

� − 1
� , �13�

we obtain the function f�w� in Eq. �10�,

f�w� =
�

� − 1

w

�
−

1

�
ln� w

� − 1
��Ma−1 +

� + 1

2
w� −

�

�
.

�14�

As a result, the velocity distribution w=w�z ,�� produced by
an accelerating flame is determined indirectly by Eq. �10�
with the function f�w� specified by Eq. �14�. Formulas �10�,
�14� work as long as the flow is isentropic, that is, as long as
there is no shock in the flow. At this point one has to stress
that even a stationary planar flame front propagating from a
closed end of a tube generates a weak shock. Still, such a
shock is ultimately weak, since a typical evaluation for the
Mach number characterizing the flame is Ma=Uf /c0=10−3.
In the limit of Ma�1 the flow pushed by the planar flame
may be described as a linear compression wave propagating
with the speed of sound c0, which does not change the en-
tropy of the gas. A noticeably stronger shock may develop
later in the flow, violating the isentropic approximation. In
Sec. IV of the present paper we will find the instant of the
shock formation, which indicates the rigorous limits of the
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isentropic approach. Meanwhile, we assume the velocity dis-
tribution �10�, �14� valid with no limitations.

We are interested mainly in the temperature increase in
the compression wave, since the reaction rate is strongly
coupled to the temperature. For that purpose we calculate the
local sound speed in the isentropic flow according to �1�

c = c0 +
� − 1

2
u , �15�

with the temperature increase

T

T0
= � c

c0
�2

= �1 +
� − 1

2

u

c0
�2

. �16�

In the dimensionless variables with �=T /T0 the same for-
mula is

� = �1 +
� − 1

2
w Ma�2

. �17�

As an illustration, the temperature distribution in a compres-
sion wave generated by a flame is shown in Fig. 1 for �
=5 and R /Lf =50, which corresponds to the acceleration rate
�=0.23 of Eq. �2�. Other parameters Ma=0.045, �=1.3 are
the same as in the simulations �23�. The temperature profiles
are shown for the different time instants Uft /R=0.8–6.4
with the interval 0.8; the last profile �selected by bold� cor-
responds to the time instant Uft /R=7.9. The vertical lines
indicate the temperature jump at the flame front.

An explosion happens if the reaction is completed in a gas
element of the fuel mixture earlier than this element is burnt
by the flame front. Suppose that the temperature of the gas
element increases because of the heat release in the reaction
only. Then such a gas element explodes abruptly after some
preliminary time interval called the induction time �i, which
depends on the gas temperature and on the chemical param-
eters, �i=�i�T� �3�. Typically, the dependence �i=�i�T� is ex-
tremely strong; therefore in order to find the condition for the
explosion we have to study only the region of maximal tem-
peratures just ahead of the flame front. In that case we are
interested in the velocity distribution close to the flame in the
form

w = Wp + � �w

�z
�

�,w=Wp

�z − Zl� . �18�

Calculating the derivative from Eq. �10� we find

1 = �
� + 1

2
� �w

�z
�

�

+ � df

dw
�

w=Wp

� �w

�z
�

�

, �19�

or

� �w

�z
�

�

= ��
� + 1

2
+ � df

dw
�

w=Wp

	−1

, �20�

with

df

dw
=

�

�� − 1��
−

� + 1

2�
ln� w

� − 1
� −

1

�
� 1

w Ma
+

� + 1

2
� .

�21�

Respectively, for w=Wp= ��−1�exp���� we obtain

df

dw
=

�

�� − 1��
−

� + 1

2
� −

1

�
� 1

WpMa
+

� + 1

2
� , �22�

which leads to

� �w

�z
�

�

= �� �

� − 1
−

1

MaWp
−

� + 1

2
�−1

, �23�

or

� �w

�z
�

	

= −
�	

A�B − 	�
, �24�

where a time-related variable 	=exp���� is introduced to-
gether with the following designations:

A =
�

� − 1
−

� + 1

2
, �25�

B =
1

A�� − 1�Ma
. �26�

For the parameters �=5, �=1.3, Ma=0.045 used in Ref.
�23� we find A=0.1, B=55.56. According to Eq. �24�, the

FIG. 1. Temperature profiles ahead of the
flame front for �=5 and R /Lf =50 at tUf /R
=0.8–6.4 with time intervals 0.8. The bold line
corresponds to tUf /R=7.9, when the system Eqs.
�36�, �37� is satisfied. The marker shows the re-
spective position. The dashed lines present the
temperature profiles calculated using Eq. �27�.
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velocity distribution just ahead of the flame front takes the
form

w = �� − 1�	 −
�	

A�B − 	�
�z − Zl�	�� , �27�

with Zl=��	−1� /�. Approximating the velocity distribution
ahead of the flame front by Eq. �27� we may calculate the
respective temperature by using Eq. �17�. The temperature
profiles found in that way are presented in Fig. 1 by the
dashed lines. As we can see, the linear approximation for the
velocity profile, Eq. �27�, works quite well in the vicinity of
the flame front.

At this step, using the velocity distribution �27�, we have
to find the trajectories of the gas particles. The velocity of a
gas particle is equal to

w 

dz

d�
= �	

dz

d	
. �28�

Substituting Eq. �28� into Eq. �27� we obtain an equation for
the trajectories of the gas particles close to the flame front,

dz

d	
=

� − 1

�
−

z − Zl

A�B − 	�
, �29�

with the solution

z�	� − Zl�	� = C�B − 	�1/A −
A�B − 	�
��1 − A�

. �30�

In principle, the integration constant C in Eq. �30� may be
determined using the initial position of the gas particle z0.
However, as we will see below, the value z0 is not important
for the problem, and we leave the integration coefficient C as
it is. A gas particle is consumed by the flame front at the time
instant �c �corresponding to 	c� when

z�	c� = Zl�	c� . �31�

Then, using Eq. �30� we can express the integration constant
C by use of �c �or 	c�,

C =
A�B − 	c�1−1/A

��1 − A�
, �32�

and Eq. �30� may be rewritten as

z�	� − Zl�	� =
A�B − 	�
��1 − A���B − 	c

B − 	
�1−1/A

− 1	 , �33�

which leads to

	c = B − �B − 	��1 +
��1 − A�
A�B − 	�

�z − Zl��−A/�1−A�

, �34�

or

	c 
 exp���c� = B − �B − 	�


�1 +
��1 − A�
A�B − 	�

�z −
�

�
�	 − 1��	−A/�1−A�

, �35�

where we have substituted the expression for Zl from Eq. �8�.
Thus we express the value 	c as a function of time 	 and the

position z. That is, for every gas element at the point z at
time � �or 	� we know the time instant when it will be con-
sumed by the flame, �c=�−1ln 	c. This value determines also
the time interval �c−� left for a gas element before it will be
burnt by the flame.

The gas element explodes definitely, if �c−� in the point z
at time � is larger than the induction time at the same point
and time, �i=�i���z ,���=�i�z ,�� �in reality, it explodes even
earlier, since temperature increases and the induction time
decreases as the gas element comes closer to the flame front�.
Thus the sufficient condition of the explosion is given by the
equation

�i�z,�� + � − �c�z,�� = 0, �36�

which compares these two time intervals. If Eq. �36� is sat-
isfied at a certain time instant �� at least at one point z, then
the respective gas element explodes ahead of the flame front.
The explosion happens at the time instant ��+�i, that is, the
induction time later after the condition �36� is satisfied. As
we can see from Eq. �36�, the explosion happens at �c����
=��+�i����. Equation �36� contains two variables, � and z,
which formally implies a dependence ��=���z�. In order to
find the explosion time, we are interested in the smallest
possible �� satisfying Eq. �36� for any z. To minimize �� we
obtain an additional equation from Eq. �36�,

� ��i

�z
�

�

= � ��c

�z
�

�

. �37�

The solution to the set of Eqs. �36�, �37� determines �� and
the instant of the explosion �c����.

III. INDUCTION TIME

The system �36�, �37� contains two functions, �c�� ,z� and
�i=�i���z ,���=�i�z ,��. The first one, �c�� ,z�, was obtained
in the previous section, see Eq. �35�. In the present section
we provide information on the other function, the induction
time versus temperature of a gas particle. The induction time
shows how long a time is needed for the reaction to be com-
pleted in a gas element. In paper �23� the reaction mecha-
nism in the DDT was described by a single irreversible re-
action of Arrhenius type. In reality, the induction time at low
temperature �ahead of the flame front� is not controlled by
the same Arrhenius law as that governing the heat release at
high temperature �inside the flame�. For hydrocarbon mix-
tures and for hydrogen-oxygen mixtures, the chemical reac-
tion shows a crossover temperature, about 1000 K, below
which the reaction rate slows down drastically �transition
due to the competition between chain branching and chain
breaking� �27�. This explains different combustion phenom-
ena as, for example, the flammability limits; this is also im-
portant for the DDT. Due to these limitations, the tempera-
ture increase ahead of an accelerating laminar flame in
experiments �taking into account thermal losses� is not suf-
ficiently high to ignite a cold fuel mixture �27–29�, and the
DDT is observed only for turbulent flames �2–8�. However,
with all these complications in mind, with rather moderate
success in the theory of turbulent burning, one has little hope
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to develop any theory of the DDT. To develop a theory, it is
important to start at least with simple models, which provide
basic quantitative description of the process, and which may
be later elaborated into more realistic and much more com-
plicated results. Therefore in the present paper we use the
simplified model of the one-step irreversible Arrhenius reac-
tion for the flame acceleration and the DDT as it was pro-
posed and verified in Ref. �23�. In addition, we will use
another simple and relevant model of an Arrhenius law with
a cut off temperature. Investigation of more realistic reaction
mechanisms is a large part of the combustion science, which
is far beyond the scope of the present paper.

We start with a single irreversible reaction of Arrhenius
type of the first order,

dY

dt
= −

Y

tR
exp�−

E

RgT
� , �38�

where Y is the concentration of the fresh fuel mixture, tR is
the reaction constant of time dimension, Rg is the ideal gas
constant, and E is the activation energy, which is typically
high, E /RgT�1. Particularly, a reaction like Eq. �38� was
used in the direct numerical simulations of the DDT in a
laminar flow �23�. Using the Arrhenius reaction as an ex-
ample, we will demonstrate how one can calculate the time
of the explosion ahead of an accelerating flame front. Study
of the explosion triggering using more complicated chemical
kinetics will be presented elsewhere. According to Ref. �3�, a
gas element explodes after the induction time,

ti = tRCP
RgT2

EQ
exp� E

RgT
� , �39�

where Q is the heat release in the reaction, and CP is the
respective heat capacity at constant pressure. Formula �39�
requires additional explanations. It was derived assuming
that a gas particle is “suddenly” put at an increased tempera-
ture at the initial time as, for example, when crossing a
shock. In the case of a continuous compression wave inves-
tigated in Sec. II the initial temperature of a gas particle also
increases, but the increase goes continuously. In that case Eq.
�39� may be used only in the limit of high activation energy,
E /RgT�1 �in fact, it was derived only for that limit�. Then
the development of the reaction at lower temperatures may
be neglected in comparison with the reaction at higher tem-
peratures, as long as the temperature increases because of an
external reason like a compression wave. A similar situation
takes place inside a flame front, where the temperature in-
creases continuously due to thermal conduction from the ini-
tial value to the final one with negligible reaction. The whole
reaction takes place in a tiny zone, where the temperature
differs only slightly from the final value. In the compression
wave the reaction also becomes important only when the
temperature comes sufficiently close to the maximal value
just ahead of the flame front �when the conditions �36�, �37�
are satisfied�. Then temperature of the gas element increases
both due to the compression and the reaction, and the reac-
tion process requires a shorter time than that determined by
Eq. �39�. We stress that our theory specifies sufficient condi-
tions for the explosion and determines the explosion time

from above. In the general case of different reaction mecha-
nisms at low and high temperatures there is no straight cor-
relation between the coefficients in Eq. �39� and the param-
eters of the flame front. However, when both mechanisms are
described by the same formula �38�, like it was adopted in
Ref. �23�, the induction time �39� may be related to the flame
velocity and thickness, Uf and Lf. For illustration purposes,
first we neglect variations of these parameters because of the
temperature increase ahead of the flame front, assume Lewis
number equal unity and a constant coefficient of thermal
conduction �. The temperature dependence of the planar
flame velocity will be taken into account at the end of this
section. Then using the Zeldovich-Frank-Kamenetski theory
�3� we find

Uf
2 =

2�TbT0

� fCPtR�Tb − T0�2�RgTb

E
�2

exp�−
E

RgTb
� , �40�

Lf =
�

� fCPUf
, �41�

where Tb is the temperature of the burnt matter,

Tb/T0 = 1 + Q/�CPT0� = � . �42�

Particularly, one may reduce Eqs. �40�–�42� to

Uf =
2Lf�

3

tR�� − 1�2�RgT0

E
�2

exp�−
E

Rg�T0
� , �43�

and the induction time may be written in a similar way as

ti = tR
RgT2

E�� − 1�T0
exp� E

RgT
� . �44�

Expressing tR from Eq. �43� and substituting into the relation
for the induction time �44� we obtain

ti = 2
Lf

Uf
� �RgT0

�� − 1�E�
3T2

T0
2 exp� E

RgT0
�T0

T
−

1

�
�	 . �45�

Using the scaled variables introduced above we can rewrite
Eq. �45� as

�i = 2
Lf

R

�3�2

�� − 1�3�3 exp��

�
−

�

�
� , �46�

where �=E / �RgT0� is the scaled activation energy. In the
dimensionless formulation of the problem �36�, �37�, the
scaled induction time �i depends on the scaled tube width
R /Lf. The acceleration rate � of the flame front given by Eq.
�2� also depends on the scaled tube width R /Lf due to the
relation

Re =
R

PrLf
, �47�

where Pr is the Prandtl number. Therefore choosing a par-
ticular tube width R /Lf we specify both the acceleration rate
and the induction time �i �with the other parameters fixed�,
and we may solve the problem �36�, �37�, that is, we may
find the time �� and the explosion instant �c����. The formu-
lated problem was solved numerically. Solution to Eq. �36� is
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illustrated in Fig. 2 for the parameters �=5, �=1.3, Ma
=0.045 used in Ref. �23� and for the tube of radius R /Lf
=50 with �=0.23. The solid line presents the flame position
versus time, while the dashed lines show trajectories of gas
particles. The loop in Fig. 2 is the solution to Eq. �36�. Gas
particles inside the loop may explode ahead of the flame
front. The square marker indicates the point at the loop cor-
responding to minimal time �the solution to Eqs. �36�, �37��.
Trajectory of the respective particle is selected by larger
dashes. The particle reaches the flame front at the time in-
stant �c=9.3 shown by circular marker. The explosion hap-
pens at this time and place. One more dotted line in Fig. 2
describes a particle, which would be consumed by the flame
at the time instant �c=9.8. Still, in the time interval 9.3�
9.8, such a trajectory is only hypothetic, since the explo-
sion happens earlier. The solution to the problem �36�, �37� is
shown in Fig. 3 versus the scaled activation energy � for
�=5, �=1.3, Ma=0.045 and different R /Lf =20,50,100,
which correspond to �=0.53;0.23;0.12, respectively. The
locus of the explosion from Fig. 2 is shown by the marker.
As we can see, the explosion time increases noticeably with
the increase of the activation energy. Still, this dependence is
not extremely dramatic like that given by Eq. �44� �or by Eq.
�46� in the scaled form�. Particularly, taking �=E / �RgT0�
=20 similar to paper �23� we obtain ��=4.6;7.9;8.3 and �c

=5.0;9.3;14.9 for R /Lf =20,50,100. In Fig. 1 the tempera-
ture profile corresponding to ��=7.9 is indicated by bold; the
respective position, where the system �36�, �37� is satisfied,
is shown in Figs. 1 and 2 by the square marker.

It is also interesting to consider the model of an Arrhenius
reaction with a cutoff temperature Tz. According to that
model, the reaction rate is determined by Eq. �38� at T�Tz,
and it is zero at TTz. Then the explosion time becomes
sensitive to the cutoff. Solution to the set of Eqs. �36�, �37�
together with the Arrhenius law �39� determines the time ��
and the position z�=z���� of a gas particle, for which the
Arrhenius reaction goes sufficiently fast to guarantee the ex-
plosion. The same equations �together with Eqs. �17�, �27��
determine also the temperature of the gas element T�
=T�x� , t�� �or ��=��z� ,��� in the dimensionless units�. At
that point one has to compare T� to the cut off temperature
Tz. In the case of T��Tz, the Arrhenius reaction is “permit-
ted,” and the explosion happens. In the opposite case of T�
Tz, the Arrhenius reaction is forbidden, and one has to wait
longer for the explosion. Then the system of equations �36�,
�37� has to be modified: the equation �37� of minimal pos-
sible time must be replaced by the cutoff condition

��z�,��� � �z. �48�

FIG. 2. Trajectories of the flame front �the
bold solid line� and of gas particles ahead of the
flame �the dotted and dashed lines� for �=5 and
R /Lf =50. The particles are consumed by the
flame at the time instants tcUf /R
=6.3;8.3;9.3;9.8. The line selected by large
dashes corresponds to the particle, which may ex-
plode first just ahead of the flame front at
tcUf /R=9.3. Solution to Eq. �36� is shown by the
other solid line. The position of minimal time,
satisfying Eq. �36�, and the explosion position are
shown by the square and circular markers,
respectively.

FIG. 3. The explosion time �c versus the
scaled activation energy for R /Lf =20;50;100,
�a�, �b�, �c�, respectively. The dashed lines present
the instant ��, when the system �36�, �37� is sat-
isfied. The dotted line shows the time of shock
formation �s. The locus of explosion from Fig. 2
is shown by the marker.
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For example, for the parameters �=5, �=1.3, Ma=0.045,
R /Lf =50 considered above, the explosion is delayed in com-
parison with that of Fig. 1 if �z�1.3. Evaluating the dimen-
sional cutoff as 1000 K �27� we can see that the explosion
proceeds according to the simple Arrhenius mechanism only
for the initial temperature T0�770 K. This corresponds to a
noticeably preheated fuel mixture. However, the whole set of
parameters of the simulations �23� resemble a flame with
preliminary preheating.

In the case of the Arrhenius reaction with a cutoff tem-
perature ���z, the explosion time may be also found in
another way. When the condition �36� is satisfied, the tem-
perature just ahead of the flame differs slightly from the tem-
perature ��, with the evaluation

��Zl� − �� = O��−1� �49�

for ��1. Then the explosion time may be evaluated from
above by the condition that temperature just ahead of the
flame is equal to the cutoff temperature

��Zl� = �z. �50�

Taking into account Eqs. �17� and �19� we find

�z = �1 +
� − 1

2
Ma�� − 1�exp���c��2

, �51�

which leads to the explosion time

�c = �−1ln�2
�z

1/2 − 1

Ma�� − 1��� − 1�
� . �52�

According to Eq. �52�, in that case the explosion time is
indeed strongly sensitive to the temperature cutoff.

We have to stress also that in our theory the explosion
happens just ahead of the flame front. Still, the experiments
�30� demonstrate two possibilities. In some cases the explo-
sion happens at the flame front in agreement with the present
theory. In other cases the explosion is observed noticeably
ahead of the flame front, and it is preceded by the formation
of a strong shock in the compression wave. Obviously, the
theory is relevant only to the first type of the DDT, while the
second one is beyond the present analysis. Still, even in the
first case the present theory cannot be applied straightfor-
ward to analyze the experiments. All experiments �30� dem-
onstrate the shock formation before the explosion triggering.
Strictly speaking, a shock violates the condition of an isen-
tropic flow used in the present paper. However, sometimes
shock influence may be minor even quantitatively, as we
show below in Sec. V.

There is one more effect of the model, which requires a
discussion. To obtain the solution of Fig. 3 we assumed that
the planar flame velocity Uf is constant in the acceleration
process. In reality, it varies in time because of the tempera-
ture variations just ahead of the flame front, see Eqs. �17�,
�40�. The increase of Uf may be taken into account, for ex-
ample, as corrections to the acceleration rate Eq. �2�. We
point out that the theory of Sec. II was developed indepen-
dent of any particular value for the acceleration rate. The
acceleration rate comes into the theory as an external infor-
mation. Equation �2� determines the acceleration rate in a 2D

laminar flow produced by a flame in a tube with adiabatic
walls. Taking into account turbulence and thermal losses to
the walls, one will come to a modified expression for �.
Another modification happens because of the temperature
dependence of Uf. Particularly, for the parameters �=5, �
=1.3, Ma=0.045, and R /Lf =50 used in Fig. 1 the modified
acceleration rate may be estimated as �m=0.27 instead of
�=0.23 considered above. As we can see, the increase of the
planar flame velocity provides minor corrections to the ac-
celeration rate, about 17%. Increase of the acceleration rate
modifies also the time instant of the explosion: we obtain
�c=8.05 instead of �c=9.3 demonstrated in Figs. 1–3.

IV. LIMITATIONS OF THE THEORY
DUE TO THE SHOCK FORMATION

The analytical theory developed above is based on the
assumption of an isentropic flow ahead of the flame front.
The assumption holds until a shock develops inside the com-
pression wave. As the flame accelerates, the compression
wave becomes stronger because of the nonlinear structure of
Eqs. �10�, �14�, which eventually produces a relatively strong
shock wave. A shock wave arises, when the function w
=w�z ,�� becomes multiple valued, that is, when bending ap-
pears in the function z=z�w ,��

� �z

�w
�

�

= 0, � �2z

�w2�
�

= 0. �53�

The above equations applied to Eq. �10� determine the time
�s and the position zs of the shock formation, and the flow
velocity at the arising shock ws �1�,

� + 1

2
�s = − � df

dw
�

w=ws

, � d2f

dw2�
w=ws

= 0. �54�

Taking into account Eq. �14� we calculate

df

dw
=

�

�� − 1��
−

� + 1

2�
ln� w

� − 1
� −

1

�w
� 1

Ma
+

� + 1

2
w� ,

�55�

d2f

dw2 = −
� + 1

2�w
+

1

� Maw2 . �56�

Thus at the time and place of the shock formation the flow
velocity is

ws =
2

�� + 1�Ma
, �57�

which corresponds to

us =
2c0

� + 1
�58�

in the dimensional variables, and which is slightly below c0.
The time of the shock formation is calculated from Eq. �54�
as
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��s = −
2�

�� + 1��� − 1�
+ 2 − ln�� + 1

2
�� − 1�Ma� .

�59�

In the approximation of Ma→0 we obtain a simplified for-
mula

�s = −
1

�
ln�� + 1

2
�� − 1�Ma� . �60�

We can observe a shock formation in Fig. 4, which presents
the temperature profiles for the same flow parameters as Fig.
1, but for a noticeably longer time period tUf /R=1.5–12
with step 1.5. One can see a shock formation in the last but
one temperature profile; the last profile corresponds formally
to a multiple-valued function for the temperature. Using �s
and ws we find the position of the shock formation zs from
Eq. �10�,

zs =
2

Ma
�s +

2�

Ma�� − 1��� + 1��

+
2

Ma �
ln�� + 1

2
�� − 1�Ma� −

�

�
, �61�

or

zs =
2

Ma �
�2 −

�

�� − 1��� + 1�� −
�

�
. �62�

We find also the temperature at the point zs,

Ts

T0
= �s = �1 +

� − 1

� + 1
�2

=
4�2

�� + 1�2 . �63�

The time of the shock formation determines the validity lim-
its of the present theory. In the case of �=5 and R /Lf
=20;50;100 �with �=0.53;0.23;0.12� the time instants of
the shock formation �s are presented in Fig. 3 by the dotted
horizontal lines. Intersections of these lines with the curves
��=���E /RgT0� limit the domain of the activation energies,
for which the present theory works rigorously. Still, even
beyond that limits the theory may work rather well. Even
after the shock formation, the intensity of the shock mea-
sured by the relative pressure jump remains moderate for

some time. On the other hand, it is known that the entropy
jump in a weak shock scales as cube of the pressure jump
�1�. Because of the last fact, the isentropic approximation for
the compression wave may work well even for some time
after the shock formation.

V. COMPARISON TO THE NUMERICAL SIMULATIONS

It would be interesting to compare the present theory to
the experiments. For that purpose one needs, first of all, an
information about the acceleration rate of the flame front �.
Unfortunately, the experimental measurements did not ad-
dress � so far and they deal with turbulent burning. The
experimental results concern typically the dimensional char-
acteristic length or time of the DDT �4–8�. These values
depend on �, but they also involve the turbulent flame speed,
which by itself is an important problem of hydrodynamics
and combustion science waiting for solution. They also de-
pend on the mechanism of chemical kinetics, which may be
quite complicated in reality. By all these reasons, instead of
real experiments, one can compare the theory to the numeri-
cal simulations.

To the best of our knowledge, so far there has been only
one work on direct numerical simulations of the DDT in a
laminar flow, which included all processes starting from the
flame acceleration and up to the detonation wave �23�. We
would like to stress that, though the idea of a laminar DDT
allowed the possibility of direct numerical simulations of the
process, still the task undertaken by Kagan and Sivashinsky
in Ref. �23� remains extremely difficult from the numerical
point of view. Indeed, when modeling the DDT one has to
resolve the internal flame structure, the strongly curved
shape of the accelerating flame front, the structure of the
compression wave ahead of the front, and finally, the deto-
nation structure. All these phenomena are characterized by
quite different length and time scales. Therefore, trying to
model all these processes in one simulation run in a reason-
able time, a researcher inevitably faces considerable prob-
lems with the computational accuracy. As a result, one
should expect much lower accuracy in Ref. �23�, which stud-
ied the whole process of the DDT, in comparison with the
papers �24,25�, devoted to the flame acceleration only. Be-
cause of the accuracy limitations, the results of Ref. �23�

FIG. 4. Temperature profiles ahead of the
flame front for �=5 and R /Lf =50 at tUf /R
=1.5–12 with time intervals 1.5. The dashed line
shows the multiple-valued part of the
dependence.
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agree with Refs. �24,25� only qualitatively, but not quantita-
tively. Particularly, instead of the exponential regime of the
flame acceleration, Eq. �1�, observed in Refs. �24,25�, paper
�23� presented linear growth of the flame velocity with time,

Wl = �Ww = ��1 + a�� , �64�

with a�1.45 for R /Lf =5. Therefore, in order to compare the
present theory to the simulations �23�, we have to perform
additional calculations modifying the theory for the accelera-
tion regime �64� instead of Eq. �1� considered in Sec. II.
Then the flame position is calculated as

Zl = ���1 + a�/2� , �65�

and the dimensionless velocity w ahead of the flame front is
described indirectly by

z = ��Ma−1 +
� + 1

2
w� + f�w� , �66�

with the function

f�w� =
1

2a
�1 −

w

� − 1
��2 Ma−1 − � + �� −

1

� − 1
�w	 .

�67�

The velocity distribution ahead of the flame front may be
presented as

w�z,�� = �� − 1��1 + a�� +
z − Zl���
p� − q

, �68�

where we have introduced the coefficients

p =
1

� − 1
−

� − 1

2
, �69�

q =
1

a
�Ma−1 − 1

� − 1
+

� − 1

2
� . �70�

To perform the comparison we used the parameters of the
numerical study �23�: the expansion coefficient �=5, the
Mach number Ma=0.045, and �=1.3, which leads to the
factors p=0.1 and q=3.76. The temperature in the compres-
sion wave is calculated by the same formula �17� as before.
The temperature profiles for the acceleration regime �64� are
presented by the solid lines in Fig. 5 for the different time

FIG. 5. Temperature profiles ahead of the
flame front for �=5 and R /Lf =50 for the accel-
eration regime Eq. �65� at tUf /R=0.8–6.4 with
time intervals 0.8. The bold line corresponds to
tUf /R=7.14, when the system Eqs. �36�, �37� is
satisfied. The marker shows the respective posi-
tion. The dashed lines present the temperature
profiles calculated using Eq. �68�.

FIG. 6. Maximal temperature ahead of the
flame front versus time according to the theory
�solid line� and the simulations �23� �markers�.
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instants �= tUf /R=0.8–6.4 with the time interval 0.8. The
final profile shown by bold corresponds to the time instant
tUf /R=7.14, when the system �36�, �37� is satisfied. Figure 6
shows the maximal temperature in the compression wave
�just ahead of the flame front� versus time: the solid line
presents the theoretical result Eqs. �17�, �68�; the markers
correspond to the numerical simulations �23�. As we can see,
the theory predicts the maximal temperature quite well; only
at the time tUf /R=5.6 the theoretical results underestimate
the temperature a little, approximately by 6%.

To calculate the trajectories of the gas particles close to
the flame front we rewrite Eq. �29� in the form

dz

d�
= �� − 1��1 + a�� +

z − Zl���
p� − q

, �71�

with the solution

z = Zl +
a

p�1 − 2p�
	2 −

p + aq

p�1 − p�
	 + C	1/p, �72�

where a time-related variable 	=1− p� /q is introduced for
simplicity. A gas particle �at the position z at time �� is con-
sumed by the flame at the time instant �c=�c�z ,��. Respec-
tively, taking z��c�=Zl��c� �or z�	c�=Zl�	c� for 	 variable�,
we rewrite Eq. �72� for 	=	c in the form

a

p�1 − 2p�
	c

2−1/p −
p + aq

p�1 − p�
	c

1−1/p + C = 0. �73�

Substituting the constant C from Eq. �73� into Eq. �72� we
find

z − Zl�	� +
p + aq

p�1 − p��	 − 	c� 	

	c
�1/p	

−
a

p�1 − 2p��	2 − 	c
2� 	

	c
�1/p	 = 0. �74�

Equation �74� determines an implicit dependence 	c
=	c�	 ,z�, or �c=�c�	 ,z�. Then, in order to find the explosion
time, we have to solve the system �36�, �37� with the func-
tion 	c=	c�	 ,z� specified by Eq. �74� instead of Eq. �35�.
Solving the system numerically with the scaled activation

energy E /RgT0=20 used in Ref. �23� we find the explosion
time �c=8.4. The last value exceeds a little the result �c
=6.5 obtained in Ref. �23�. The deviation of the results may
be explained by the following reasons.

First of all, the numerical simulations �23� are two-
dimensional �2D�, while the present theory is only one-
dimensional �1D�. In a 2D geometry the curved flame shape
leads to a multidimensional shock structure, collisions of the
shocks may produce the so-called “hot points,” which are
impossible in the present 1D theory. It is generally accepted
that the “hot points” reduce the explosion time, though up to
now there was no quantitative answer to the question of how
strong this reduction is. The real structure of the accelerating
flame front is also curved and elongated, as it was obtained
in Ref. �25�, and not planar, as it is assumed in the 1D theory.
The approximation of a planar piston becomes possible only
when comparing the length scale of the flame front to the
characteristic length scale of the compression wave with the
factor proportional to Ma−1. However, when we consider the
process of explosion from the point of view of the curved
flame front, then the explosion is expected to occur in the
tongues of engulfed fresh mixture.

Second, the present theory holds rigorously until a shock
is formed in the compression wave; after that the theory may
work only as a model. However, for the simulation param-
eters of Ref. �23� the explosion happens after the shock for-
mation, as we can see, for example, in Fig. 5. In that case,
strictly speaking, the present theory may provide only evalu-
ations. The relatively good agreement of the theory and the
numerical simulations may be explained by the weak shock
intensity �with the relative temperature jump about 0.5�,
which violates only slightly the assumption of an isentropic
flow.

Finally, the deviations of the theory and the numerical
simulations may be explained by the limited numerical accu-
racy of the simulations. To illustrate this, we have plotted the
explosion time for the acceleration regime of Ref. �23� ver-
sus the scaled activation energy in Fig. 7; the explosion time
obtained in the numerical simulations �23� is shown by the
marker. As we can see, variations of the activation energy by
20% �from E /RgT0=20 to 16� modify the explosion time
from �c=8.4 found in the theory to �c=6.4 observed in the

FIG. 7. The explosion time for the accelera-
tion regime Eq. �65� versus the scaled activation
energy according to the theory �solid line� and the
simulations �23� �marker�.
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simulations. Still, such a variation of the activation energy is
equivalent to a numerical error in calculating the temperature
in the compression wave by 20%. The error of 20% would be
quite normal for such a difficult numerical problem as that
considered in Ref. �23�. By all these reasons, we can state
that the present theory agrees well with the simulation results
�23�.

VI. SUMMARY

In the present paper we have developed the theory of
explosion triggering by an accelerating flame in a tube. The
theory describes the structure of the one-dimensional isentro-
pic compression wave pushed by the flame front. The condi-
tion of explosion in the gas mixture ahead of the flame front
is derived, Eqs. �36�, �37�, with the instant of the explosion
�c determined by Eq. �35�. In the dimensional variables, a
gas element in the position x at time t may explode ahead of
the flame front �after the induction time ti�, if the following
system is satisfied:

ti�T� + t − tc�t,x� = 0, �75�

� �ti

�x
�

t

= � �tc

�x
�

t

, �76�

with the instant of explosion tc calculated from

exp��Uftc/R� = B − �B − 	�


�1 +
��1 − A�
A�B − 	�

� x

R
−

�

�
�	 − 1��	−A/�1−A�

,

�77�

where 	=exp��Uft /R�, and the constants A and B are de-
fined by Eqs. �25�, �26�. The induction time ti�T� in Eqs.
�75�, �76� depends on temperature in the compression wave
ahead of the flame front, which varies in time and space as

T

T0
= �1 +

� − 1

2
Ma 	�� − 1 −

�x/R − �	 + �

A�B − 	� �	2

.

�78�

Still, one has to specify the dependence ti= ti�T� for any par-
ticular mechanism of chemical kinetics. In the present paper
we demonstrate how the problem is solved in the case of a
single reaction of Arrhenius type, controlling combustion
both inside the flame front and ahead of the flame. We also
considered the model of an Arrhenius reaction with a cutoff
temperature, see Eq. �52�. We find limitations of the theory
due to the effect of the shock formation in the compression
wave. We compare the theoretical results to the previous nu-
merical simulations and find good agreement.
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